
Database and Data Wrangling

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

2

Taxonomy of the data

 Data is facts, observations and measurements that are used to make discoveries

and to support decisions. A data point is a single unit of data with in a dataset

 Datasets may come in different formats and structures, and will usually be classified based

on its source

 For example, a company's monthly earnings might be in a spreadsheet but hourly heart rate

data from a smartwatch or simple personal information in a club may be in JSON format.

It's common for data scientists to work with different types of data

3

https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data

https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data

Database and data wrangling

 The data you need will often live in databases, systems designed for efficiently

storing and querying data. You will need to know how to read it and extract the

data you want

 The bulk of these are relational databases, such as SQLite, MySQL, and SQL Server,

which store data in tables and are typically queried using Structured Query Language

(SQL), a declarative language for manipulating data

 https://leemeng.tw/why-you-need-to-learn-sql-as-a-data-scientist.html

 While databases offer very efficient ways to store data and query them using

query languages, the most flexible way of data processing is writing your own

program to manipulate data

 When more complex data processing is needed, it cannot be done easily using SQL

 Data wrangling using Dataframe is a rescue

4

https://leemeng.tw/why-you-need-to-learn-sql-as-a-data-scientist.html
https://datascience.stackexchange.com/questions/34357/why-do-people-prefer-pandas-to-sql

1. How data is Described?

 Raw data is data that has come from its source in its initial state and has not

been analyzed or organized

 In order to make sense of what is happening with a dataset, it needs to be organized into a

format that can be understood by humans or can be analyze further

 The structure of a dataset describes how it's organized and can be classified as

structured, unstructured and semi-structured. There are several options:

1. Text files are easiest to create, and work well with version control, but then we would

have to build search and analysis tools ourselves

2. Spreadsheets are good for analysis, but they don’t handle large or complex datasets well

3. Relational databases, however, include powerful tools for search and simple analysis, and

can handle large, complex datasets

5

https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data

1. How data is Described?

 Unstructured data typically cannot be categorized into rows or columns and

doesn't contain a format or set of rules to follow

+ Because unstructured data has fewer restrictions on its structure it's easier to add new

information in comparison to a structured dataset

- However, this may make analyzing or investigating this type of data take longer time

 Examples of unstructured data

6

 Office files, such as Word

documents

 Text files

 Log files

 Media files, such as photos,

videos, and audio files (Binary

files)

1. How data is Described?

 Structured data is data that is organized into rows and columns, where each

row will have the same set of columns and it adheres to a strict schema

 Columns will often have a specific set of rules or restrictions on the values, to ensure that

the values accurately represent the column

7

+ A benefit is that it can be organized in

such a way that it can be related to

other structured data

- However, making changes to its overall

structure can take a lot of effort to do

 Examples of structured data: relational

databases

https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data

https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data

1. How data is Described?

 Semi-structured data has features that make it a combination of structured

and unstructured data and it is not stored in a relational format

 It doesn't typically conform to a format of rows and columns but is organized in a way that

is considered structured and may follow a fixed format or set of rules

 Such as a well-defined hierarchy or more flexibility that allows for easy integration of new data

 Metadata is used as an indicator that helps decide how the data is organized and stored.

Some common names for metadata are tags, elements, entities and attributes

 For example, a typical email message will have a subject, body and a set of recipients and can be

organized by whom or when it was sent

 Examples of semi-structured data: HTML, CSV files, JavaScript Object Notation (JSON)

or NoSQL

8

2. Relational Database

 Recall that the data scientist is someone who cleans, massages, and organizes

data. Data scientists will usually already get data that has passed a first round

of cleaning and manipulation

 A relational database is built upon the core principle of columns (fields, attributes) and

rows (records, tuples) in tables, allowing you to have information spread across multiple

tables. This allows you to work with complex data, avoid duplication, and have flexibility

 A DataBase Management System (DBMS) is software that allows applications to store and

analyze information in a database

 ACID (atomicity, consistency, isolation, durability) is a set of properties of database transactions

intended to guarantee data validity despite errors, power failures, and other mishaps

9

https://en.wikipedia.org/wiki/ACID

Data Model

 Proposed in 1970 by Ted Codd

 Database abstraction

 Store database in simple data structures (relations)

 Physical storage is left up to the DBMS implementation

 Access data through a high-level language

 A data model is a collection of concepts for describing the data in a database

 Relational

 Key/Value

 Graph

 Document/object

 Column-family

 Array/Matrix

10

https://15445.courses.cs.cmu.edu/spring2023/schedule.html

Relational model

 A relation is unordered set that contain the relationship of attributes that

represent entities

 A tuple is a set of attribute values in the relation

 𝑛-ary Relation = Table with 𝑛 columns

 A relation’s primary key uniquely identifies a single tuple and it is the domain of 𝑛-ary

relations

 A foreign key specifies that an attribute from one relation has to map to a tuple in another

relation

11
https://en.wikipedia.org/wiki/Relational_model

https://web.archive.org/web/20220120212953/http:/math.unipa.it/~grim/21_project/21_Charlotte_KochPaperEdit2.pdf
https://en.wikipedia.org/wiki/Relational_model

Relational Algebra

 Fundamental operations to retrieve and manipulate tuples in a relation

 Based on set algebra

 Each operator takes one or more relations as its inputs and outputs a new relation

 We can “chain” operators together to create more complex operations

 SQL provides hundreds of different ways to analyze and recombine data. We

will only look at a handful of queries

 When a user submits a SQL query to a database, the DBMS translates the query into a

series of relational algebra operations that can be executed against the database

 When we are using a database, we send queries to a database manager. The database

manager does whatever lookups and calculations the query specifies, returning the results

in a tabular form that we can then use as a starting point for further queries

 Cheat sheet: https://www.mit.edu/~amidi/teaching/data-science-tools/study-guide/data-

retrieval-with-sql/

12

https://15445.courses.cs.cmu.edu/spring2023/notes/01-introduction.pdf
https://www.mit.edu/~amidi/teaching/data-science-tools/study-guide/data-retrieval-with-sql/

Schema

 The structure of a table is called its schema. We need to understand a table's

schema to effectively pull out the data we want

 The database schema is its structure described in a formal language supported by the

DBMS. The term "schema" refers to the organization of data as a blueprint of how the

database is constructed (divided into database tables in the case of relational databases)

13
https://www.kaggle.com/learn/intro-to-sql

https://www.kaggle.com/learn/intro-to-sql

Foundation of extraction – SELECT, FROM, WHERE

 The most basic SQL query selects a single column from a single table.

 specify the column you want after the word SELECT, and then

 specify the table after the word FROM

 For instance, to select the `Name` column (from the `pets` table in the

`pet_records` database), our query would appear as follows:

14

Foundation of extraction – SELECT, FROM, WHERE

 Datasets are usually very large, so you'll usually want to return only the rows

meeting specific conditions. You can do this using the WHERE clause

 The query below returns the entries from the `Name` column that are in rows where the

`Animal` column has the text `Cat`

15

Get more interesting insights – GROUP BY, HAVING, COUNT

 This can help you answer questions like:

 How many of each kind of fruit has our store sold?

 How many species of animal has the vet office treated?

 COUNT() returns a count of things. If you pass it the name of a column, it will

return the number of entries in that column

 For instance, if we SELECT the COUNT() of the `ID` column in the `pets` table, it will

return 4, because there are 4 ID's in the table

 COUNT() is an example of an aggregate function, which takes many values and returns

one. Other examples of aggregate functions include SUM(), AVG(), MIN(), and MAX()

16

Get more interesting insights – GROUP BY, HAVING, COUNT

 GROUP BY takes the name of one or more columns, and treats all rows with

the same value in that column as a single group when you apply aggregate

functions like COUNT()

 We can use GROUP BY to group together rows that have the same value in the `animal`

column, while using COUNT() to find out how many ID's we have in each group If

we want to know how many of each type of animal in the `pets` table

17

Get more interesting insights – GROUP BY, HAVING, COUNT

 HAVING is used in combination with GROUP BY to ignore groups that don't

meet certain criteria

 HAVING clause behaves similarly to a WHERE clause, except that its filter is applied to

the aggregates (whereas a WHERE would filter out rows before aggregation even took

place)

 So this query, for example, will only include groups that have more than one ID in them

18

Order results to focus on the most important data – ORDER BY

 You can change the order of results using the ORDER BY clause

 ORDER BY is usually the last clause in your query, and it sorts the results returned by the

rest of your query

 Notice that the original rows are not ordered by the ID column. We can quickly remedy this

with the query below

19

Order results to focus on the most important data – ORDER BY

 The ORDER BY clause also works for columns containing text, where

the results show up in alphabetical order

 You can reverse the order using the DESC argument (short for 'descending'). The

following query sorts the table by the Animal column, where the values that are last

in alphabetic order are returned first

20

Order results to focus on the most important data – ORDER BY

 Often you'll want to look at part of a date, like the year or the day. You can do

this with EXTRACT

 The query below returns two columns, where column Day contains the day corresponding

to each entry the Date column from the pets_with_date table:

 SQL is very smart about dates, and we can ask for information beyond just extracting part

of the cell

21

Organize your query for better readability – AS, WITH

 With all that you've just learned, your SQL queries are getting pretty long,

which can make them hard understand (and debug)

 Use AS and WITH to tidy up your queries and make them easier to read

 To use AS in SQL, insert it right after the column you select

22

Organize your query for better readability – AS, WITH

 On its own, AS is a convenient way to clean up the data returned by your query.

It's even more powerful when combined with WITH in what's called

a ’’common table expression’’ (or CTE)

 CTE is a temporary table that you return within your query. CTEs are helpful for splitting

your queries into readable chunks, and you can write queries against them

23

Organize your query for better readability – AS, WITH

 While this incomplete query above won't return anything, it creates a CTE that

we can then refer to (as Seniors) while writing the rest of the query

 You could do this without a CTE, but if this were the first part of a very long query,

removing the CTE would make it much harder to follow

 It's important to note that CTEs only exist inside the query where you create them, and you

can't reference them in later queries. So, any query that uses a CTE is always broken into

two parts: (1) first, we create the CTE, and then (2) we write a query that uses the CTE

24

Combine data sources – JOIN, UNION

 You have the tools to obtain data from a single table in whatever format you

want it. But what if the data you want is spread across multiple tables?

 That's where JOIN comes in! JOIN is incredibly important in practical SQL workflows

25

Combine data sources – JOIN, UNION

 Using JOIN, we can write a query to create a table with just two columns: the

name of the pet and the name of the owner

 We combine information from both tables by matching rows where the ID column in the

pets table matches the Pet_ID column in the owners table

 In the query, ON determines which column in each table to use to combine the tables.

Notice that since the ID column exists in both tables, we have to clarify which one to use.

We use p.ID to refer to the ID column from the pets table, and o.Pet_ID refers to the

Pet_ID column from the owners table

26

Combine data sources – JOIN, UNION

 To create a table containing all rows from the owners table, we CAN use a

LEFT JOIN. In this case, "left" refers to the table that appears before the JOIN

in the query. ("Right" refers to the table that is after the JOIN.)

 Replacing INNER JOIN in the query above with LEFT JOIN returns all rows where the

two tables have matching entries, along with all of the rows in the left table (whether there

is a match or not)

 If we instead use a RIGHT JOIN, we get the matching rows, along with all rows in the

right table (whether there is a match or not)

 Finally, a FULL JOIN returns all rows from both tables. Note that in general, any row that

does not have a match in both tables will have NULL entries for the missing values. You

can see this in the image below

27

Combine data sources – JOIN, UNION

28

Combine data sources – JOIN, UNION

 JOINs horizontally combine results from different tables. If you instead would

like to vertically concatenate columns, you can do so with a UNION. The

example query below combines the Age columns from both tables

 Note that with a UNION, the data types of both columns must be the same, but the column

names can be different

 For instance, we cannot take the UNION of the Age column from the owners table and the

Pet_Name column from the pets table

29

Advance SQL - Nested data

 Consider a dataset containing information about pets and their toys. We could

organize this information in two different tables. The toys table could contain a

"Pet_ID" column that could be used to match each toy to the pet that owns it

 Another option is to organize all of the information in a single table, similar to

the pets_and_toys table below

 Nested columns have type STRUCT (or type RECORD). This is reflected in the table

schema

30

https://www.kaggle.com/code/alexisbcook/nested-and-repeated-data

Advance SQL - Nested data

 To query a column with nested data, we need to identify each field in the

context of the column that contains it:

 Toy.Name refers to the "Name" field in the "Toy" column, and

 Toy.Type refers to the "Type" field in the "Toy" column.

31

Advance SQL - Nested data

 Now consider the (more realistic!) case where each pet can have multiple toys.

In this case, to collapse this information into a single table, we need to leverage

a different datatype

 We say that the "Toys" column contains repeated data, because it permits more than one

value for each row. This is reflected in the table schema below, where the mode of the

"Toys" column appears as 'REPEATED'.

32

Advance SQL - Nested data

 When querying repeated data, we need to put the name of the column

containing the repeated data inside an UNNEST() function

 This essentially flattens the repeated data (which is then appended to the right side of the

table) so that we have one element on each row. For an illustration of this, check out the

image below

33

3. Data wrangling with Pandas

 When you have a lot of data, and it is contained in many different linked tables,

it definitely makes sense to use SQL for working with it

 However, there are many cases when we have a table of data, and we need to gain

some understanding or insights about this data, such as the distribution, correlation

between values, etc. In data science, there are a lot of cases when we need to perform some

transformations of the original data, followed by visualization in an interactive way

 Pandas is a Python package providing fast, flexible, and expressive data

structures designed to make working with “relational” or “labeled” data

 Most of the operations in SQL can be implemented with Pandas

 Flexible group by functionality to perform split-apply-combine operations on datasets, for

both aggregating and transforming data. Intuitive merging and joining datasets

 Intelligent label-based slicing, fancy indexing, and subsetting of large datasets

34

https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html#compare-with-sql

Data wrangling with Pandas

 In addition

1. Easy handling of missing data in floating point as well as non-floating point data

2. Flexible reshaping and pivoting of datasets

3. Hierarchical labeling of axes (possible to have multiple labels per tick)

4. Robust IO tools for loading data from flat files (CSV and delimited), Excel files,

databases

5. Time series-specific functionality: date range generation and frequency conversion,

moving window statistics, date shifting, and lagging

35

Working with data - Series

 Series is a sequence of values, similar to a list or Numpy array. The main

difference is that series also has an index, and when we operate on series (eg.,

add them), the index is taken into account. Index can be as simple as integer

row number (it is the index used by default when creating a series from list or

array), or it can have a complex structure, such as date interval

 A DataFrame is essentially a collection of series with the same index. We can combine

several series together into a DataFrame

36

https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-With-Data/07-python/README.md

DataFrame

 It is a 2-dimensional data structure that can store data of different types

(including characters, integers, floating-point values, categorical data and more)

in columns

 It is similar to a spreadsheet, a SQL table or the data.frame in R.

 https://pandas.pydata.org/docs/getting_started/index.html

 Rows indicating records (samples) and columns indicating fields (features)

37

https://pandas.pydata.org/docs/getting_started/index.html

Data wrangling

 To see the important data wrangling techniques, refer to here

 Subset observations (rows), Subset variables (columns), Subsets (rows and columns)

 Query (Filtering)

 Summarize data

 Group data

 Reshaping data (Change layout, sorting, dropping, renaming)

 Combine data

 Windows

 Handing missing value

 Creating dataframe

 Make new column

 Plotting

38
https://pandas.pydata.org/docs/user_guide/reshaping.html

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/docs/user_guide/reshaping.html

Conclusion

 SQL is a pretty essential part of the data scientist’s toolkit.

 When you have a lot of data, and it is contained in many different linked tables, it

definitely makes sense to use SQL for working with it

 However, there are many cases when we have a table of data, and we need to

gain some understanding or insights about this data

 In data science, there are a lot of cases when we need to perform some transformations of

the original data, followed by visualization. In these cases, the spreadsheet is helpful

 We now have basic tools for retrieving and manipulating data, we can go on to

cleaning and preparing our data in the next lecture!

39

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Chapter 1

[2] https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-

With-Data/05-relational-databases/README.md

[3] https://www.kaggle.com/learn/intro-to-sql

[4] https://www.kaggle.com/learn/advanced-sql

[5] Python for Data Analysis, 2nd Edition

[6] Data Science from scratch, 2nd Edition

40

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-With-Data/05-relational-databases/README.md
https://www.kaggle.com/learn/intro-to-sql
https://www.kaggle.com/learn/advanced-sql
https://github.com/wesm/pydata-book
https://github.com/joelgrus/data-science-from-scratch

Appendix

41

Resources and libraries

 SQL and Pandas

 https://www.kaggle.com/learn/pandas

 https://www.kaggle.com/learn/intro-to-sql

 https://datawranglingpy.gagolewski.com/

 Theory about database

 https://15445.courses.cs.cmu.edu/spring2023/schedule.html

 Create or update database

 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-manipulation-language

 Implementation of relational database

 https://ucsbcarpentry.github.io/2020-01-31-UCSB-SQL/ (SQLite)

 https://github.com/timescale/timescaledb (PostgreSQL)

 https://cloud.google.com/sql (MySQL, SQL Server and PostgreSQL)

42

https://www.kaggle.com/learn/pandas
https://www.kaggle.com/learn/intro-to-sql
https://datawranglingpy.gagolewski.com/
https://15445.courses.cs.cmu.edu/spring2023/schedule.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-manipulation-language
https://ucsbcarpentry.github.io/2020-01-31-UCSB-SQL/
https://github.com/timescale/timescaledb
https://cloud.google.com/sql

Resources and libraries

 Non-relational database

 Introduction from microsoft

 Cassandra

 MongoDB

 Hbase

 High-performance dataframe for large data

 Various tools

 Pandas use tips

 Parquet

 In memory analytics and column-oriented database

 Arrow

 Click house

43

https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-With-Data/06-non-relational/README.md
https://github.com/Anant/awesome-cassandra
https://github.com/ramnes/awesome-mongodb
https://github.com/rayokota/awesome-hbase
https://www.datarevenue.com/en-blog/pandas-vs-dask-vs-vaex-vs-modin-vs-rapids-vs-ray
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://stackoverflow.com/questions/26124417/how-to-convert-a-csv-file-to-parquet
https://arrow.apache.org/docs/index.html
https://github.com/ClickHouse/ClickHouse

 Begin our exploration by starting a table to store information about cities. We

might start with their name and country

 Let's start to add some additional data to our database - annual rainfall (in millimeters).

We'll focus on the years 2018, 2019 and 2020. If we were to add it for Tokyo, it might look

something like this

 It could take up quite a bit of storage, and is largely unnecessary to have multiple copies

The shortcomings of a single table approach

City Country Year Amount

Tokyo Japan 2020 1690

Tokyo Japan 2019 1874

Tokyo Japan 2018 1445

44

City Country

Tokyo Japan

Atlanta United States

Auckland New Zealand

https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-With-Data/05-relational-databases/README.md

The shortcomings of a single table approach

 Let's try something else. Let's add new columns for each year

 While this avoids the row duplication, it adds a couple of other challenges. We would need

to modify the structure of our table each time there's a new year. Additionally, as our data

grows having our years as columns will make it trickier to retrieve and calculate values

 This is why we need multiple tables and relationships. By breaking apart our data we can

avoid duplication and have more flexibility in how we work with our data

45

City Country 2018 2019 2020

Tokyo Japan 1445 1874 1690

Atlanta
United

States
1779 1111 1683

Auckland
New

Zealand
1386 942 1176

The concepts of relationships

 Let's determine how we want to split things up. We know we want to store the

name and country for our cities, so this will probably work best in one table

 But before we create the next table, we need to figure out how to reference each city. We

need some form of an identifier, ID or (in technical database terms) a primary key

 A primary key is a value used to identify one specific row in a table. We don't want the id

to ever change as it would break the relationship

 With our cities table created, let's store the rainfall. Rather than duplicating the full

information about the city, we can use the id. We should also ensure the newly created

table has an id column as well, as all tables should have an id or primary key

46

city_id City Country

1 Tokyo Japan

2 Atlanta United States

3 Auckland New Zealand

The concepts of relationships

 Notice the city_id column inside the newly created rainfall table. This column

contains values which reference the IDs in the cities table. In technical

relational data terms, this is called a foreign key; it's a primary key from

another table. You can just think of it as a reference or a pointer

47

rainfall_id city_id Year Amount

1 1 2018 1445

2 1 2019 1874

3 1 2020 1690

4 2 2018 1779

5 2 2019 1111

6 2 2020 1683

7 3 2018 1386

8 3 2019 942

9 3 2020 1176

The precedence of SQL operators

48

https://jvns.ca/blog/2019/10/03/sql-queries-don-t-start-with-select/

https://jvns.ca/blog/2019/10/03/sql-queries-don-t-start-with-select/

Analytical functions

 Unlike aggregate functions, analytic functions return a value for each row in

the original table

 Analytic functions allow us to perform complex calculations with relatively

straightforward syntax. For instance, we can quickly calculate moving averages and

running totals, among other quantities

 We'd like to calculate a moving average of the training times for each runner, where we

always take the average of the current and previous training sessions. We can do this with

the following query:

49

Analytical functions

 All analytic functions have an OVER clause, which defines the sets of rows

used in each calculation. The OVER clause has three parts:

 The PARTITION BY clause divides the rows of the table into different groups

 The ORDER BY clause defines an ordering within each partition

 The final clause known as a window frame clause. It identifies the set of rows used in each

calculation. We can refer to this group of rows as a window

50

